Cargando…
Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities
PURPOSE: To develop an automated classification system using a machine learning classifier to distinguish clinically unaffected eyes in patients with keratoconus from a normal control population based on a combination of Scheimpflug camera images and ultra-high-resolution optical coherence tomograph...
Autores principales: | Shi, Ce, Wang, Mengyi, Zhu, Tiantian, Zhang, Ying, Ye, Yufeng, Jiang, Jun, Chen, Sisi, Lu, Fan, Shen, Meixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507244/ https://www.ncbi.nlm.nih.gov/pubmed/32974414 http://dx.doi.org/10.1186/s40662-020-00213-3 |
Ejemplares similares
-
Evaluation of Scheimpflug Tomography Parameters in Subclinical Keratoconus, Clinical Keratoconus and Normal Caucasian Eyes
por: Huseynli, Samira, et al.
Publicado: (2018) -
Scheimpflug imaging for keratoconus and ectatic disease
por: Belin, Michael W, et al.
Publicado: (2013) -
Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients
por: Liu, Yan, et al.
Publicado: (2021) -
Predictive Ability of Galilei to Distinguish Subclinical Keratoconus and Keratoconus from Normal Corneas
por: Feizi, Sepehr, et al.
Publicado: (2016) -
Rotating Scheimpflug Imaging Indices in Different Grades of Keratoconus
por: Wahba, Sherine S., et al.
Publicado: (2016)