Cargando…
Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life
BACKGROUND: It is a computational challenge for current metagenomic classifiers to keep up with the pace of training data generated from genome sequencing projects, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new reference sequences are added to training data, stati...
Autores principales: | Zhao, Zhengqiao, Cristian, Alexandru, Rosen, Gail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507296/ https://www.ncbi.nlm.nih.gov/pubmed/32957925 http://dx.doi.org/10.1186/s12859-020-03744-7 |
Ejemplares similares
-
Keeping Our Authors’ Trust
por: Paz-Pacheco, Elizabeth
Publicado: (2019) -
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights
por: ValizadehAslani, Taha, et al.
Publicado: (2020) -
Let’s keep our eye on the ball
por: Norman, Wendy V, et al.
Publicado: (2020) -
Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Keeping up with the genomes: scaling genomic variant interpretation
por: Rehm, Heidi L., et al.
Publicado: (2019)