Cargando…
Early detection of black Sigatoka in banana leaves using hyperspectral images
PREMISE: Black Sigatoka is one of the most severe banana (Musa spp.) diseases worldwide, but no methods for the rapid early detection of this disease have been reported. This paper assesses the use of hyperspectral images for the development of a partial‐least‐squares penalized‐logistic‐regression (...
Autores principales: | Ugarte Fajardo, Jorge, Bayona Andrade, Oswaldo, Criollo Bonilla, Ronald, Cevallos‐Cevallos, Juan, Mariduena‐Zavala, María, Ochoa Donoso, Daniel, Vicente Villardón, José Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507400/ https://www.ncbi.nlm.nih.gov/pubmed/32995103 http://dx.doi.org/10.1002/aps3.11383 |
Ejemplares similares
-
Effective Methods Based on Distinct Learning Principles for the Analysis of Hyperspectral Images to Detect Black Sigatoka Disease
por: Ugarte Fajardo, Jorge, et al.
Publicado: (2022) -
GC‐MS metabolite profiling for specific detection of dwarf somaclonal variation in banana plants
por: Cevallos‐Cevallos, Juan M., et al.
Publicado: (2018) -
Climate change effects on Black Sigatoka disease of banana
por: Bebber, Daniel P.
Publicado: (2019) -
Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments
por: Yonow, Tania, et al.
Publicado: (2019) -
Sources of resistance to Pseudocercospora fijiensis, the cause of black Sigatoka in banana
por: Kimunye, Janet, et al.
Publicado: (2021)