Cargando…

Long non-coding RNA PSMA3-AS1 enhances cell proliferation, migration and invasion by regulating miR-302a-3p/RAB22A in glioma

Glioma is the most prevalent solid tumor in the central nervous system (CNS). Recently, it has been indicated that long non-coding RNAs (lncRNAs) substantially adjust the development of a variety of human cancers. In the present study, it was found and verified via microarray analysis that lncRNA PS...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Li-li, Zhang, Meng, Zhang, Yan-zhen, Sun, Mei-fen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507598/
https://www.ncbi.nlm.nih.gov/pubmed/32894281
http://dx.doi.org/10.1042/BSR20191571
Descripción
Sumario:Glioma is the most prevalent solid tumor in the central nervous system (CNS). Recently, it has been indicated that long non-coding RNAs (lncRNAs) substantially adjust the development of a variety of human cancers. In the present study, it was found and verified via microarray analysis that lncRNA PSMA3-AS1 exhibited a high expression in glioma tissues and cell lines. Then CCK-8, 5-Ethynyl-2′-deoxyuridine (EdU) staining, plate clone assay, Transwell assay, Western blotting and nude mouse model were adopted to verify PSMA3-AS1’s effects on glioma. Knockdown of PSMA3-AS1 inhibited the migration, proliferation and invasion of glioma cells in vivo and in vitro. Besides, PSMA3-AS1 bound to miR-302a-3p directly reduced the expression of miR-302a-3p, thus functioning as an endogenous sponge confirmed by luciferase reporter assay and bioinformatics analysis. PSMA3-AS1 knockdown remarkably enhanced the role of miR-302a-3p overexpression in cell behaviors in glioma. Moreover, these assays also confirmed that RAB22A was a target of miR-302a-3p. In this research, therefore, the PSMA3-AS1/miR-302a-3p/RAB22A pathway regulatory axis may be revealed in the pathogenesis of glioma, and PSMA3-AS1 can be used as an underlying target for the treatment and prognosis of glioma.