Cargando…
Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model
BACKGROUND: Acute Kidney Injury (AKI) is a shared complication among Intensive Care Unit (ICU), marked by high cost, high morbidity and high mortality. As the early prediction of AKI is critical for patients’ outcomes and data mining is such a powerful prediction tool, many AKI prediction models bas...
Autores principales: | Wang, Yuan, Wei, Yake, Yang, Hao, Li, Jingwei, Zhou, Yubo, Wu, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507620/ https://www.ncbi.nlm.nih.gov/pubmed/32957977 http://dx.doi.org/10.1186/s12911-020-01245-4 |
Ejemplares similares
-
Imbalanced Ensemble Learning for Enhanced Pulsar Identification
por: Holewik, Jakub, et al.
Publicado: (2020) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM
por: Wang, Qi, et al.
Publicado: (2017) -
Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data
por: Li, Kewen, et al.
Publicado: (2019) -
An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets
por: Stanescu, Ana, et al.
Publicado: (2015)