Cargando…

Pharmacological Inhibition of Galectin-3 Ameliorates Diabetes-Associated Cognitive Impairment, Oxidative Stress and Neuroinflammation in vivo and in vitro

BACKGROUND: In diabetes, cognitive impairment is linked with oxidative stress and neuroinflammation. As the only chimeric member of the galectin family, galectin-3 (Gal3) induces neuroinflammation and cognitive impairment in models of Alzheimer’s disease (AD); however, its role in diabetes-associate...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Qingqing, Chen, Jian, Ma, Shizhan, Dong, Chuanfang, Zhang, Yue, Hou, Xunyao, Li, Shangbin, Liu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508034/
https://www.ncbi.nlm.nih.gov/pubmed/32982368
http://dx.doi.org/10.2147/JIR.S273858
Descripción
Sumario:BACKGROUND: In diabetes, cognitive impairment is linked with oxidative stress and neuroinflammation. As the only chimeric member of the galectin family, galectin-3 (Gal3) induces neuroinflammation and cognitive impairment in models of Alzheimer’s disease (AD); however, its role in diabetes-associated cognitive impairment is not established. METHODOLOGY: Here, we investigated the effects of Gal3 inhibition on cognitive impairment and the possible underlying molecular events in diabetes. We investigated the effects of the Gal3 inhibitor modified citrus pectin (MCP; 100 mg/kg/day oral for 6 weeks) in vivo in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats. Additionally, the effects of MCP on high glucose (HG)-stimulated BV-2 microglial cells were investigated in vitro. RESULTS: We found that MCP attenuated memory impairment in diabetic rats in the Morris water maze test and reduced insulin resistance, oxidative stress, and neuroinflammation. In HG-stimulated BV-2 microglial cells, MCP increased cell viability and decreased oxidative stress and the production of proinflammatory cytokines. CONCLUSION: The results of this study indicate that the inhibition of Gal3 by MCP ameliorates diabetes-associated cognitive impairment, oxidative stress, and neuroinflammation, suggesting that Gal3 could be a potential new target for therapeutic intervention to prevent cognitive impairment in diabetes.