Cargando…
SSNdesign—An R package for pseudo-Bayesian optimal and adaptive sampling designs on stream networks
Streams and rivers are biodiverse and provide valuable ecosystem services. Maintaining these ecosystems is an important task, so organisations often monitor the status and trends in stream condition and biodiversity using field sampling and, more recently, autonomous in-situ sensors. However, data c...
Autores principales: | Pearse, Alan R., McGree, James M., Som, Nicholas A., Leigh, Catherine, Maxwell, Paul, Ver Hoef, Jay M., Peterson, Erin E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508409/ https://www.ncbi.nlm.nih.gov/pubmed/32960894 http://dx.doi.org/10.1371/journal.pone.0238422 |
Ejemplares similares
-
The Impact of Spatial Scales and Spatial Smoothing on the Outcome of Bayesian Spatial Model
por: Kang, Su Yun, et al.
Publicado: (2013) -
Validation and comparison of geostatistical and spline models for spatial stream networks
por: Rushworth, A. M., et al.
Publicado: (2015) -
Controlled evaLuation of Angiotensin Receptor Blockers for COVID-19 respIraTorY disease (CLARITY): statistical analysis plan for a randomised controlled Bayesian adaptive sample size trial
por: McGree, J. M., et al.
Publicado: (2022) -
Predicting sediment and nutrient concentrations from high-frequency water-quality data
por: Leigh, Catherine, et al.
Publicado: (2019) -
Indexing and partitioning the spatial linear model for large data sets
por: Ver Hoef, Jay M., et al.
Publicado: (2023)