Cargando…
TS-Extractor: large graph exploration via subgraph extraction based on topological and semantic information
Exploring large graphs is difficult due to their large size and semantic information such as node attributes. Extracting only a subgraph relevant to the user-specified nodes (called focus nodes) is an effective strategy for exploring a large graph. However, existing approaches following this strateg...
Autores principales: | Fu, Kun, Mao, Tingyun, Wang, Yang, Lin, Daoyu, Zhang, Yuanben, Zhan, Junjian, Sun, Xian, Li, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508425/ https://www.ncbi.nlm.nih.gov/pubmed/32982559 http://dx.doi.org/10.1007/s12650-020-00699-y |
Ejemplares similares
-
Mining subgraph coverage patterns from graph transactions
por: Reddy, A. Srinivas, et al.
Publicado: (2021) -
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
por: Zha, Bing, et al.
Publicado: (2023) -
An inductive knowledge graph embedding via combination of subgraph and type information
por: Liu, Hongbo, et al.
Publicado: (2023) -
SING: Subgraph search In Non-homogeneous Graphs
por: Di Natale, Raffaele, et al.
Publicado: (2010) -
Faster algorithms for counting subgraphs in sparse graphs
por: Bressan, Marco
Publicado: (2021)