Cargando…

A Novel Concept is Needed for Combating Alzheimer’s Disease and NeuroHIV

Both Alzheimer’s disease (AD) and HIV-associated neurocognitive disorders (HAND) could progress to dementia, a severe consequence of neurodegenerative diseases. Cumulating evidence suggests that the β-amyloid (Aβ) theory, currently thought to be the predominant mechanism underlying AD and AD-related...

Descripción completa

Detalles Bibliográficos
Autor principal: Hu, Xiu-Ti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508468/
https://www.ncbi.nlm.nih.gov/pubmed/32968718
http://dx.doi.org/10.36959/734/377
Descripción
Sumario:Both Alzheimer’s disease (AD) and HIV-associated neurocognitive disorders (HAND) could progress to dementia, a severe consequence of neurodegenerative diseases. Cumulating evidence suggests that the β-amyloid (Aβ) theory, currently thought to be the predominant mechanism underlying AD and AD-related dementia (ADRD), needs re-evaluation, considering all treatments and new drug trials based upon this theory have been unsuccessful. Similar intention for treating HAND, including HIV-associated dementia (HAD), has also failed. Thus, novel theory, hypothesis, and therapeutic strategies are desperately needed for future study and effective treatments of AD/ADRD and HAND. There are numerous potential upstream mechanisms that may cause AD and/or HAND; but it is unrealistic to identify all of them. However, it is realistic and feasible to intervene the downstream mechanism of these two devastating neurodegenerative diseases by blocking the final common path to neurotoxicity mediated by overactivation of NMDA receptors (NMDARs) and voltage-gated calcium channels (VGCCs). Such a combined pharmacological intervention will likely ameliorate neuronal Ca(2+) homeostasis by diminishing overactivated NMDAR and VGCC-mediated Ca(2+) dysregulation (i.e., by reducing excessive Ca(2+) influx and intracellular levels, [Ca(2+)]in)-induced hyperactivity, injury, and death of neurons in the critical brain regions that regulate neurocognition in the context of AD/ADRD or HAND, especially during aging. Here we present a novel theoretical concept, hypothesis, and working model for switching the battlefield from searching-and-fighting the original mechanism that may cause AD or HAND, to abolishing AD- and neuroHIV-induced neurotoxicity mediated by NMDAR and VGCC over activation, which may ultimately improve the therapeutic strategies for treating AD and HAND.