Cargando…
Spectral clustering of risk score trajectories stratifies sepsis patients by clinical outcome and interventions received
Sepsis is not a monolithic disease, but a loose collection of symptoms with diverse outcomes. Thus, stratification and subtyping of sepsis patients is of great importance. We examine the temporal evolution of patient state using our previously-published method for computing risk of transition from s...
Autores principales: | Liu, Ran, Greenstein, Joseph L, Fackler, James C, Bembea, Melania M, Winslow, Raimond L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508552/ https://www.ncbi.nlm.nih.gov/pubmed/32959779 http://dx.doi.org/10.7554/eLife.58142 |
Ejemplares similares
-
Prediction of Impending Septic Shock in Children With Sepsis
por: Liu, Ran, et al.
Publicado: (2021) -
Data-driven discovery of a novel sepsis pre-shock state predicts impending septic shock in the ICU
por: Liu, Ran, et al.
Publicado: (2019) -
Early Prediction of Multiple Organ Dysfunction in the Pediatric Intensive Care Unit
por: Bose, Sanjukta N., et al.
Publicado: (2021) -
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
por: Leelatian, Nalin, et al.
Publicado: (2020) -
T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences
por: Madi, Asaf, et al.
Publicado: (2017)