Cargando…
Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment
Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508862/ https://www.ncbi.nlm.nih.gov/pubmed/32963243 http://dx.doi.org/10.1038/s41392-020-00246-z |
_version_ | 1783585487868395520 |
---|---|
author | Perez, Marco García-Heredia, José Manuel Felipe-Abrio, Blanca Muñoz-Galván, Sandra Martín-Broto, Javier Carnero, Amancio |
author_facet | Perez, Marco García-Heredia, José Manuel Felipe-Abrio, Blanca Muñoz-Galván, Sandra Martín-Broto, Javier Carnero, Amancio |
author_sort | Perez, Marco |
collection | PubMed |
description | Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy. |
format | Online Article Text |
id | pubmed-7508862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75088622020-10-08 Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment Perez, Marco García-Heredia, José Manuel Felipe-Abrio, Blanca Muñoz-Galván, Sandra Martín-Broto, Javier Carnero, Amancio Signal Transduct Target Ther Article Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy. Nature Publishing Group UK 2020-09-23 /pmc/articles/PMC7508862/ /pubmed/32963243 http://dx.doi.org/10.1038/s41392-020-00246-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Perez, Marco García-Heredia, José Manuel Felipe-Abrio, Blanca Muñoz-Galván, Sandra Martín-Broto, Javier Carnero, Amancio Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title | Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title_full | Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title_fullStr | Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title_full_unstemmed | Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title_short | Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment |
title_sort | sarcoma stratification by combined ph2ax and map17 (pdzk1ip1) levels for a better outcome on doxorubicin plus olaparib treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508862/ https://www.ncbi.nlm.nih.gov/pubmed/32963243 http://dx.doi.org/10.1038/s41392-020-00246-z |
work_keys_str_mv | AT perezmarco sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment AT garciaherediajosemanuel sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment AT felipeabrioblanca sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment AT munozgalvansandra sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment AT martinbrotojavier sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment AT carneroamancio sarcomastratificationbycombinedph2axandmap17pdzk1ip1levelsforabetteroutcomeondoxorubicinplusolaparibtreatment |