Cargando…

Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects

BACKGROUND: Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. OBJECTIVE: To provide a comprehensive review of machine learning (ML), deep...

Descripción completa

Detalles Bibliográficos
Autores principales: Negassi, Misgana, Suarez-Ibarrola, Rodrigo, Hein, Simon, Miernik, Arkadiusz, Reiterer, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508959/
https://www.ncbi.nlm.nih.gov/pubmed/31925551
http://dx.doi.org/10.1007/s00345-019-03059-0
Descripción
Sumario:BACKGROUND: Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. OBJECTIVE: To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition. EVIDENCE ACQUISITION: A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition. EVIDENCE SYNTHESIS: In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database. CONCLUSION: AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.