Cargando…
Capturing Multiple Timescales of Adaptation to Second-Order Statistics With Generalized Linear Models: Gain Scaling and Fractional Differentiation
Single neurons can dynamically change the gain of their spiking responses to take into account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM),...
Autores principales: | Latimer, Kenneth W., Fairhall, Adrienne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509073/ https://www.ncbi.nlm.nih.gov/pubmed/33013331 http://dx.doi.org/10.3389/fnsys.2020.00060 |
Ejemplares similares
-
Intrinsic Gain Modulation and Adaptive Neural Coding
por: Hong, Sungho, et al.
Publicado: (2008) -
On homogeneous second order linear general quantum difference equations
por: Faried, Nashat, et al.
Publicado: (2017) -
Specificity and timescales of cortical adaptation as inferences about natural movie statistics
por: Snow, Michoel, et al.
Publicado: (2016) -
Online Denoising Based on the Second-Order Adaptive Statistics Model
por: Yi, Sheng-Lun, et al.
Publicado: (2017) -
Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold
por: Kobayashi, Ryota, et al.
Publicado: (2009)