Cargando…
NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
Many mental illnesses share overlapping or similar clinical symptoms, confounding the diagnosis. It is important to systematically characterize the degree to which unique and similar changing patterns are reflective of brain disorders. Increasing sharing initiatives on neuroimaging data have provide...
Autores principales: | Du, Yuhui, Fu, Zening, Sui, Jing, Gao, Shuang, Xing, Ying, Lin, Dongdong, Salman, Mustafa, Abrol, Anees, Rahaman, Md Abdur, Chen, Jiayu, Hong, L. Elliot, Kochunov, Peter, Osuch, Elizabeth A., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509081/ https://www.ncbi.nlm.nih.gov/pubmed/32961402 http://dx.doi.org/10.1016/j.nicl.2020.102375 |
Ejemplares similares
-
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
por: Du, Yuhui, et al.
Publicado: (2017) -
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
por: Du, Yuhui, et al.
Publicado: (2021) -
Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
por: Sui, Jing, et al.
Publicado: (2018) -
Group ICA for identifying biomarkers in schizophrenia: ‘Adaptive’ networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression
por: Salman, Mustafa S., et al.
Publicado: (2019) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021)