Cargando…
DeepKhib: A Deep-Learning Framework for Lysine 2-Hydroxyisobutyrylation Sites Prediction
As a novel type of post-translational modification, lysine 2-Hydroxyisobutyrylation (K(hib)) plays an important role in gene transcription and signal transduction. In order to understand its regulatory mechanism, the essential step is the recognition of K(hib) sites. Thousands of K(hib) sites have b...
Autores principales: | Zhang, Luna, Zou, Yang, He, Ningning, Chen, Yu, Chen, Zhen, Li, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509169/ https://www.ncbi.nlm.nih.gov/pubmed/33015075 http://dx.doi.org/10.3389/fcell.2020.580217 |
Ejemplares similares
-
DeepCSO: A Deep-Learning Network Approach to Predicting Cysteine S-Sulphenylation Sites
por: Lyu, Xiaru, et al.
Publicado: (2020) -
Qualitative lysine crotonylation and 2-hydroxyisobutyrylation analysis in the ovarian tissue proteome of piglets
por: Yang, Diqi, et al.
Publicado: (2023) -
ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning
por: Jia, Xiaoti, et al.
Publicado: (2023) -
DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites
por: Chaudhari, Meenal, et al.
Publicado: (2021) -
Incorporating Deep Learning With Word Embedding to Identify Plant Ubiquitylation Sites
por: Wang, Hongfei, et al.
Publicado: (2020)