Cargando…

Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials

Data presented in this article describe bacterial and fungal repellent properties of 2D-films and 3D-hydrogels made of different recombinantly produced spider silk proteins based on consensus sequences of Araneus diadematus dragline silk proteins (fibroin 3 and 4). Here, the attachment, growth, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumari, Sushma, Lang, Gregor, DeSimone, Elise, Spengler, Christian, Trossmann, Vanessa T., Lücker, Susanne, Hudel, Martina, Jacobs, Karin, Krämer, Norbert, Scheibel, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509184/
https://www.ncbi.nlm.nih.gov/pubmed/32995396
http://dx.doi.org/10.1016/j.dib.2020.106305
Descripción
Sumario:Data presented in this article describe bacterial and fungal repellent properties of 2D-films and 3D-hydrogels made of different recombinantly produced spider silk proteins based on consensus sequences of Araneus diadematus dragline silk proteins (fibroin 3 and 4). Here, the attachment, growth, and microbial colonization of Streptococcus mutans (S. mutans) as well as Candida albicans (C. albicans) on plane and micro-patterned films were visualized by scanning electron microscopy (SEM). Also, microbial viability data are provided of Escherichia coli (E. coli) and Pichia pastoris (P. pastoris) on hydrogels made of eADF4(C16) and eADF4(C16)-RGD, quantified using the Alamar blue assay. Experimental results, design of a post-operative contamination model of microbes with mammalian cells, and methods in the data article refer to the research paper “Engineered spider silk-based 2D and 3D materials prevent microbial infestation” published recently [1].