Cargando…

Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening

While the utility of circulating cell‐free DNA (cfDNA) in cancer screening and early detection have recently been investigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and structural features is developed. First, the potential of cfDNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanos, Rita, Tosato, Guillaume, Otandault, Amaelle, Al Amir Dache, Zahra, Pique Lasorsa, Laurence, Tousch, Geoffroy, El Messaoudi, Safia, Meddeb, Romain, Diab Assaf, Mona, Ychou, Marc, Du Manoir, Stanislas, Pezet, Denis, Gagnière, Johan, Colombo, Pierre‐Emmanuel, Jacot, William, Assénat, Eric, Dupuy, Marie, Adenis, Antoine, Mazard, Thibault, Mollevi, Caroline, Sayagués, José María, Colinge, Jacques, Thierry, Alain R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509651/
https://www.ncbi.nlm.nih.gov/pubmed/32999827
http://dx.doi.org/10.1002/advs.202000486
_version_ 1783585641707077632
author Tanos, Rita
Tosato, Guillaume
Otandault, Amaelle
Al Amir Dache, Zahra
Pique Lasorsa, Laurence
Tousch, Geoffroy
El Messaoudi, Safia
Meddeb, Romain
Diab Assaf, Mona
Ychou, Marc
Du Manoir, Stanislas
Pezet, Denis
Gagnière, Johan
Colombo, Pierre‐Emmanuel
Jacot, William
Assénat, Eric
Dupuy, Marie
Adenis, Antoine
Mazard, Thibault
Mollevi, Caroline
Sayagués, José María
Colinge, Jacques
Thierry, Alain R.
author_facet Tanos, Rita
Tosato, Guillaume
Otandault, Amaelle
Al Amir Dache, Zahra
Pique Lasorsa, Laurence
Tousch, Geoffroy
El Messaoudi, Safia
Meddeb, Romain
Diab Assaf, Mona
Ychou, Marc
Du Manoir, Stanislas
Pezet, Denis
Gagnière, Johan
Colombo, Pierre‐Emmanuel
Jacot, William
Assénat, Eric
Dupuy, Marie
Adenis, Antoine
Mazard, Thibault
Mollevi, Caroline
Sayagués, José María
Colinge, Jacques
Thierry, Alain R.
author_sort Tanos, Rita
collection PubMed
description While the utility of circulating cell‐free DNA (cfDNA) in cancer screening and early detection have recently been investigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and structural features is developed. First, the potential of cfDNA quantitative and structural parameters is independently demonstrated in cell culture, murine, and human plasma models. Subsequently, these variables are evaluated in a large retrospective cohort of 289 healthy individuals and 983 patients with various cancer types; after age resampling, this evaluation is done independently and the variables are combined using a machine learning approach. Implementation of a decision tree prediction model for the detection and classification of healthy and cancer patients shows unprecedented performance for 0, I, and II colorectal cancer stages (specificity, 0.89 and sensitivity, 0.72). Consequently, the methodological proof of concept of using both quantitative and structural biomarkers, and classification with a machine learning method are highlighted, as an efficient strategy for cancer screening. It is foreseen that the classification rate may even be improved by the addition of such biomarkers to fragmentomics, methylation, or the detection of genetic alterations. The optimization of such a multianalyte strategy with this machine learning method is therefore warranted.
format Online
Article
Text
id pubmed-7509651
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75096512020-09-29 Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening Tanos, Rita Tosato, Guillaume Otandault, Amaelle Al Amir Dache, Zahra Pique Lasorsa, Laurence Tousch, Geoffroy El Messaoudi, Safia Meddeb, Romain Diab Assaf, Mona Ychou, Marc Du Manoir, Stanislas Pezet, Denis Gagnière, Johan Colombo, Pierre‐Emmanuel Jacot, William Assénat, Eric Dupuy, Marie Adenis, Antoine Mazard, Thibault Mollevi, Caroline Sayagués, José María Colinge, Jacques Thierry, Alain R. Adv Sci (Weinh) Full Papers While the utility of circulating cell‐free DNA (cfDNA) in cancer screening and early detection have recently been investigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and structural features is developed. First, the potential of cfDNA quantitative and structural parameters is independently demonstrated in cell culture, murine, and human plasma models. Subsequently, these variables are evaluated in a large retrospective cohort of 289 healthy individuals and 983 patients with various cancer types; after age resampling, this evaluation is done independently and the variables are combined using a machine learning approach. Implementation of a decision tree prediction model for the detection and classification of healthy and cancer patients shows unprecedented performance for 0, I, and II colorectal cancer stages (specificity, 0.89 and sensitivity, 0.72). Consequently, the methodological proof of concept of using both quantitative and structural biomarkers, and classification with a machine learning method are highlighted, as an efficient strategy for cancer screening. It is foreseen that the classification rate may even be improved by the addition of such biomarkers to fragmentomics, methylation, or the detection of genetic alterations. The optimization of such a multianalyte strategy with this machine learning method is therefore warranted. John Wiley and Sons Inc. 2020-07-29 /pmc/articles/PMC7509651/ /pubmed/32999827 http://dx.doi.org/10.1002/advs.202000486 Text en © 2020 INSERM, Paris. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Tanos, Rita
Tosato, Guillaume
Otandault, Amaelle
Al Amir Dache, Zahra
Pique Lasorsa, Laurence
Tousch, Geoffroy
El Messaoudi, Safia
Meddeb, Romain
Diab Assaf, Mona
Ychou, Marc
Du Manoir, Stanislas
Pezet, Denis
Gagnière, Johan
Colombo, Pierre‐Emmanuel
Jacot, William
Assénat, Eric
Dupuy, Marie
Adenis, Antoine
Mazard, Thibault
Mollevi, Caroline
Sayagués, José María
Colinge, Jacques
Thierry, Alain R.
Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title_full Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title_fullStr Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title_full_unstemmed Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title_short Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
title_sort machine learning‐assisted evaluation of circulating dna quantitative analysis for cancer screening
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509651/
https://www.ncbi.nlm.nih.gov/pubmed/32999827
http://dx.doi.org/10.1002/advs.202000486
work_keys_str_mv AT tanosrita machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT tosatoguillaume machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT otandaultamaelle machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT alamirdachezahra machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT piquelasorsalaurence machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT touschgeoffroy machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT elmessaoudisafia machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT meddebromain machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT diabassafmona machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT ychoumarc machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT dumanoirstanislas machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT pezetdenis machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT gagnierejohan machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT colombopierreemmanuel machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT jacotwilliam machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT assenateric machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT dupuymarie machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT adenisantoine machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT mazardthibault machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT mollevicaroline machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT sayaguesjosemaria machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT colingejacques machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening
AT thierryalainr machinelearningassistedevaluationofcirculatingdnaquantitativeanalysisforcancerscreening