Cargando…
Implementation of Dropout Neuronal Units Based on Stochastic Memristive Devices in Neural Networks with High Classification Accuracy
Neural networks based on memristive devices have achieved great progress recently. However, memristive synapses with nonlinearity and asymmetry seriously limit the classification accuracy. Moreover, insufficient number of training samples in many cases also have negative effect on the classification...
Autores principales: | Huang, He‐Ming, Xiao, Yu, Yang, Rui, Yu, Ye‐Tian, He, Hui‐Kai, Wang, Zhe, Guo, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509653/ https://www.ncbi.nlm.nih.gov/pubmed/32999852 http://dx.doi.org/10.1002/advs.202001842 |
Ejemplares similares
-
Stochastic Memristive Interface for Neural Signal Processing
por: Gerasimova, Svetlana A., et al.
Publicado: (2021) -
Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion
por: Ignatov, Marina, et al.
Publicado: (2017) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015) -
Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices
por: Zahari, Finn, et al.
Publicado: (2020) -
Advances in Emerging Photonic Memristive and Memristive‐Like Devices
por: Wang, Wenxiao, et al.
Publicado: (2022)