Cargando…
Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)–Dioxothiadiazole Family of Complexes
[Image: see text] The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td(·–)) are reported: {[Cu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509843/ https://www.ncbi.nlm.nih.gov/pubmed/32907320 http://dx.doi.org/10.1021/acs.inorgchem.0c01904 |
_version_ | 1783585680337666048 |
---|---|
author | Arczyński, Mirosław Pinkowicz, Dawid |
author_facet | Arczyński, Mirosław Pinkowicz, Dawid |
author_sort | Arczyński, Mirosław |
collection | PubMed |
description | [Image: see text] The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td(·–)) are reported: {[Cu(II)Cl(td)](μ-Cl)(2)[Cu(II)Cl(td)]} (1), which incorporates only neutral td ligands; [Cu(II)Cl(td(·–))(td)]·2MeCN (2), which comprises one neutral td and one radical td(·–); and PPN[Cu(II)Cl(td(·–))(2)]·2DMA (3), where Cu(II) ions are coordinated by two radical anions td(·–) (DMA, dimethylacetamide; PPN(+), the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by Cu(II)···Cu(II) interactions (J(CuCu)) mediated through the Cl(–) bridges, while the magnetic properties of 2 and 3 are governed mainly by the td(·–)···td(·–) (J(tdtd)) and Cu(II)–td(·–) (J(Cutd)) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with J(tdtd) = −36.0(5) cm(–1) and J(Cutd) = −12.6(2) cm(–1) only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in J(tdtd) = −5.6(1) cm(–1) and two J(Cutd) constants, −12.4(2) and −22.6(4) cm(–1). The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of −600 to −100 mV vs Fc/Fc(+). Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism). |
format | Online Article Text |
id | pubmed-7509843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75098432020-09-23 Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)–Dioxothiadiazole Family of Complexes Arczyński, Mirosław Pinkowicz, Dawid Inorg Chem [Image: see text] The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td(·–)) are reported: {[Cu(II)Cl(td)](μ-Cl)(2)[Cu(II)Cl(td)]} (1), which incorporates only neutral td ligands; [Cu(II)Cl(td(·–))(td)]·2MeCN (2), which comprises one neutral td and one radical td(·–); and PPN[Cu(II)Cl(td(·–))(2)]·2DMA (3), where Cu(II) ions are coordinated by two radical anions td(·–) (DMA, dimethylacetamide; PPN(+), the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by Cu(II)···Cu(II) interactions (J(CuCu)) mediated through the Cl(–) bridges, while the magnetic properties of 2 and 3 are governed mainly by the td(·–)···td(·–) (J(tdtd)) and Cu(II)–td(·–) (J(Cutd)) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with J(tdtd) = −36.0(5) cm(–1) and J(Cutd) = −12.6(2) cm(–1) only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in J(tdtd) = −5.6(1) cm(–1) and two J(Cutd) constants, −12.4(2) and −22.6(4) cm(–1). The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of −600 to −100 mV vs Fc/Fc(+). Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism). American Chemical Society 2020-09-10 2020-09-21 /pmc/articles/PMC7509843/ /pubmed/32907320 http://dx.doi.org/10.1021/acs.inorgchem.0c01904 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Arczyński, Mirosław Pinkowicz, Dawid Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)–Dioxothiadiazole Family of Complexes |
title | Influence of the Increasing Number of Organic Radicals
on the Structural, Magnetic, and Electrochemical Properties of the
Copper(II)–Dioxothiadiazole Family of Complexes |
title_full | Influence of the Increasing Number of Organic Radicals
on the Structural, Magnetic, and Electrochemical Properties of the
Copper(II)–Dioxothiadiazole Family of Complexes |
title_fullStr | Influence of the Increasing Number of Organic Radicals
on the Structural, Magnetic, and Electrochemical Properties of the
Copper(II)–Dioxothiadiazole Family of Complexes |
title_full_unstemmed | Influence of the Increasing Number of Organic Radicals
on the Structural, Magnetic, and Electrochemical Properties of the
Copper(II)–Dioxothiadiazole Family of Complexes |
title_short | Influence of the Increasing Number of Organic Radicals
on the Structural, Magnetic, and Electrochemical Properties of the
Copper(II)–Dioxothiadiazole Family of Complexes |
title_sort | influence of the increasing number of organic radicals
on the structural, magnetic, and electrochemical properties of the
copper(ii)–dioxothiadiazole family of complexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509843/ https://www.ncbi.nlm.nih.gov/pubmed/32907320 http://dx.doi.org/10.1021/acs.inorgchem.0c01904 |
work_keys_str_mv | AT arczynskimirosław influenceoftheincreasingnumberoforganicradicalsonthestructuralmagneticandelectrochemicalpropertiesofthecopperiidioxothiadiazolefamilyofcomplexes AT pinkowiczdawid influenceoftheincreasingnumberoforganicradicalsonthestructuralmagneticandelectrochemicalpropertiesofthecopperiidioxothiadiazolefamilyofcomplexes |