Cargando…
Interobserver variability in quality assessment of magnetic resonance images
BACKGROUND: The perceptual quality of magnetic resonance (MR) images influences diagnosis and may compromise the treatment. The purpose of this study was to evaluate how the image quality changes influence the interobserver variability of their assessment. METHODS: For the variability evaluation, a...
Autores principales: | Obuchowicz, Rafal, Oszust, Mariusz, Piorkowski, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509933/ https://www.ncbi.nlm.nih.gov/pubmed/32962651 http://dx.doi.org/10.1186/s12880-020-00505-z |
Ejemplares similares
-
Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment
por: Stępień, Igor, et al.
Publicado: (2021) -
Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis
por: Obuchowicz, Rafał, et al.
Publicado: (2020) -
Effect of Matrix Size Reduction on Textural Information in Clinical Magnetic Resonance Imaging
por: Strzelecki, Michał, et al.
Publicado: (2022) -
A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images
por: Stępień, Igor, et al.
Publicado: (2022) -
Influence of Acquisition Time on MR Image Quality Estimated with Nonparametric Measures Based on Texture Features
por: Obuchowicz, Rafał, et al.
Publicado: (2019)