Cargando…
Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock
BACKGROUND: Access to quantitative information is crucial to obtain a deeper understanding of biological systems. In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex...
Autores principales: | Saberi-Bosari, Sahand, Flores, Kevin B., San-Miguel, Adriana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510121/ https://www.ncbi.nlm.nih.gov/pubmed/32967665 http://dx.doi.org/10.1186/s12915-020-00861-w |
Ejemplares similares
-
Affordable Microfluidic Bead-Sorting Platform for Automated Selection of Porous Particles Functionalized with Bioactive Compounds
por: Saberi-Bosari, Sahand, et al.
Publicado: (2019) -
Comparative Proteomics
Enables Identification of Nonannotated
Cold Shock Proteins in E. coli
por: D’Lima, Nadia G., et al.
Publicado: (2017) -
Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis)
por: Campos Mantello, Camila, et al.
Publicado: (2019) -
Cold-Responsive Regions of Paradigm Cold-Shock and Non-Cold-Shock mRNAs Responsible for Cold Shock Translational Bias
por: Giuliodori, Anna Maria, et al.
Publicado: (2019) -
Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach
por: Wang, Li, et al.
Publicado: (2023)