Cargando…
The social construction of the social epigenome and the larger biological context
Epigenetics researchers in developmental, cell, and molecular biology greatly diverge in their understanding and definitions of epigenetics. In contrast, social epigeneticists, e.g., sociologists, scholars of STS, and behavioural scientists, share a focus and definition of epigenetics that is enviro...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510271/ https://www.ncbi.nlm.nih.gov/pubmed/32967714 http://dx.doi.org/10.1186/s13072-020-00360-w |
Sumario: | Epigenetics researchers in developmental, cell, and molecular biology greatly diverge in their understanding and definitions of epigenetics. In contrast, social epigeneticists, e.g., sociologists, scholars of STS, and behavioural scientists, share a focus and definition of epigenetics that is environmentally caused and trans-generationally inherited. This article demonstrates that this emphasis on the environment and on so-called Lamarckian inheritance, in addition to other factors, reflects an interdisciplinary power struggle with genetics, in which epigenetics appears to grant the social sciences a higher epistemic status. Social scientists’ understanding of epigenetics, thus, appears in part to be socially constructed, i.e., the result of extra-scientific factors, such as social processes and the self-interest of the discipline. This article argues that social epigeneticists make far-reaching claims by selecting elements from research labelled epigenetics in biology while ignoring widely confirmed scientific facts in genetics and cell biology, such as the dependence of epigenetic marks on DNA sequence-specific events, or the lack of evidence for the lasting influence of the environment on epigenetic marks or the epigenome. Moreover, they treat as a given crucial questions that are far from resolved, such as what role, if any, DNA methylation plays in the complex biochemical system of regulating gene activity. The article also points out incorrect perceptions and media hypes among biological epigeneticists and calls attention to an apparent bias among scientific journals that prefer papers that promote transgenerational epigenetic inheritance over articles that critique it. The article concludes that while research labelled epigenetics contributes significantly to our knowledge about chromatin and the genome, it does not, as is often claimed, rehabilitate Lamarck or overthrow the fundamental biological principles of gene regulation, which are based on specific regulatory sequences of the genome. |
---|