Cargando…
Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data
BACKGROUND: The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far from being satisfactory due to their limitation in...
Autores principales: | Xu, Da, Zhang, Jialin, Xu, Hanxiao, Zhang, Yusen, Chen, Wei, Gao, Rui, Dehmer, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510277/ https://www.ncbi.nlm.nih.gov/pubmed/32962626 http://dx.doi.org/10.1186/s12864-020-07038-3 |
Ejemplares similares
-
Feature selection of gene expression data for Cancer classification using double RBF-kernels
por: Liu, Shenghui, et al.
Publicado: (2018) -
FCTP-WSRC: Protein–Protein Interactions Prediction via Weighted Sparse Representation Based Classification
por: Kong, Meng, et al.
Publicado: (2020) -
Feature Selection for Interpatient Supervised Heart Beat Classification
por: Doquire, G., et al.
Publicado: (2011) -
Feature selection and semi-supervised clustering using multiobjective optimization
por: Saha, Sriparna, et al.
Publicado: (2014) -
Protein Sequence Comparison Based on Physicochemical Properties and the Position-Feature Energy Matrix
por: Yu, Lulu, et al.
Publicado: (2017)