Cargando…
RF-PCA: A New Solution for Rapid Identification of Breast Cancer Categorical Data Based on Attribute Selection and Feature Extraction
Breast cancer is one of the most common cancer diseases in women. The rapid and accurate diagnosis of breast cancer is of great significance for the treatment of cancer. Artificial intelligence and machine learning algorithms are used to identify breast malignant tumors, which can effectively solve...
Autores principales: | Bian, Kai, Zhou, Mengran, Hu, Feng, Lai, Wenhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510777/ https://www.ncbi.nlm.nih.gov/pubmed/33033496 http://dx.doi.org/10.3389/fgene.2020.566057 |
Ejemplares similares
-
Subject clustering by IF-PCA and several recent methods
por: Chen, Dieyi, et al.
Publicado: (2023) -
Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis
por: Li, Guo-Zheng, et al.
Publicado: (2008) -
Dynamic Meta-data Network Sparse PCA for Cancer Subtype Biomarker Screening
por: Miao, Rui, et al.
Publicado: (2022) -
LMO3 downregulation in PCa: A prospective biomarker associated with immune infiltration
por: Xu, Wenchao, et al.
Publicado: (2022) -
A New Method Based on CEEMD Combined With Iterative Feature Reduction for Aided Diagnosis of Epileptic EEG
por: Zhou, Mengran, et al.
Publicado: (2020)