Cargando…
Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses
Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, wit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510926/ https://www.ncbi.nlm.nih.gov/pubmed/33014545 http://dx.doi.org/10.1364/BOE.393586 |
Sumario: | Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers. Since the optimal wavelengths and drive parameters for optical spectroscopy are not served by commercially available modules as used in our previous single-wavelength demonstration platform, we detail the design of a custom instrument and demonstrate its performance in resolving haemodynamic changes in human subjects during apnoea and cognitive task experiments. |
---|