Cargando…
Machine Learning for Absorption Cross Sections
[Image: see text] We present a machine learning (ML) method to accelerate the nuclear ensemble approach (NEA) for computing absorption cross sections. ML-NEA is used to calculate cross sections on vast ensembles of nuclear geometries to reduce the error due to insufficient statistical sampling. The...
Autores principales: | Xue, Bao-Xin, Barbatti, Mario, Dral, Pavlo O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511037/ https://www.ncbi.nlm.nih.gov/pubmed/32786977 http://dx.doi.org/10.1021/acs.jpca.0c05310 |
Ejemplares similares
-
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018) -
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Choosing the right molecular machine learning potential
por: Pinheiro, Max, et al.
Publicado: (2021) -
Interpretable Machine Learning of Two‐Photon Absorption
por: Su, Yuming, et al.
Publicado: (2023) -
WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets
por: Pinheiro Jr, Max, et al.
Publicado: (2023)