Cargando…
How to do quantile normalization correctly for gene expression data analyses
Quantile normalization is an important normalization technique commonly used in high-dimensional data analysis. However, it is susceptible to class-effect proportion effects (the proportion of class-correlated variables in a dataset) and batch effects (the presence of potentially confounding technic...
Autores principales: | Zhao, Yaxing, Wong, Limsoon, Goh, Wilson Wen Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511327/ https://www.ncbi.nlm.nih.gov/pubmed/32968196 http://dx.doi.org/10.1038/s41598-020-72664-6 |
Ejemplares similares
-
Integration of pre-normalized microarray data using quantile correction
por: Yoneya, Takashi, et al.
Publicado: (2011) -
The Birth of Bio-data Science: Trends, Expectations, and Applications
por: Goh, Wilson Wen Bin, et al.
Publicado: (2020) -
Analysis of variance, normal quantile-quantile correlation and effective expression support of pooled expression ratio of reference genes for defining expression stability
por: Priyadarshi, Himanshu, et al.
Publicado: (2017) -
Protein complex-based analysis is resistant to the obfuscating consequences of batch effects --- a case study in clinical proteomics
por: Goh, Wilson Wen Bin, et al.
Publicado: (2017) -
The impact of quantile and rank normalization procedures on the testing power of gene differential expression analysis
por: Qiu, Xing, et al.
Publicado: (2013)