Cargando…

Slow train coming: an anti-CCN2 strategy reverses a model of chronic overuse muscle fibrosis

One of the first targets proposed as an anti-fibrotic therapy was CCN2. Proof of its involvement in fibrosis was initially difficult, due to the lack of appropriate reagents and general understanding of the molecular mechanisms responsible for persistent fibrosis. As these issues have been progressi...

Descripción completa

Detalles Bibliográficos
Autor principal: Leask, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511481/
https://www.ncbi.nlm.nih.gov/pubmed/32410169
http://dx.doi.org/10.1007/s12079-020-00568-1
Descripción
Sumario:One of the first targets proposed as an anti-fibrotic therapy was CCN2. Proof of its involvement in fibrosis was initially difficult, due to the lack of appropriate reagents and general understanding of the molecular mechanisms responsible for persistent fibrosis. As these issues have been progressively resolved over the last twenty-five years, it has become clear that CCN2 is a bone fide target for anti-fibrotic intervention. An anti-CCN2 antibody (FG-3019) is in Phase III clinical trials for idiopathic pulmonary fibrosis and pancreatic cancer, and in Phase II for Duschenne’s muscular dystrophy. An exciting paper recently published by Mary Barbe and the Popoff group has shown that FG-3019 reduces established muscle fibrosis (Barbe et al., FASEB J 34:6554–6569, 2020). Intriguingly, FG-3019 blocked the decreased expression of the anti-fibrotic protein CCN3, caused by the injury model. These important data support the notion that targeting CCN2 in the fibrotic microenvironment may reverse established fibrosis, making it the first agent currently in development to do so.