Cargando…

Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle

Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of a predictive model that accurately reflects the diverse environment within the lung. This is important as TB has been shown to produce distinct localisations to different areas of the lung during different...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitcher, Michael J., Bowness, Ruth, Dobson, Simon, Eftimie, Raluca, Gillespie, Stephen H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511696/
https://www.ncbi.nlm.nih.gov/pubmed/32771534
http://dx.doi.org/10.1016/j.jtbi.2020.110381
_version_ 1783586005254668288
author Pitcher, Michael J.
Bowness, Ruth
Dobson, Simon
Eftimie, Raluca
Gillespie, Stephen H.
author_facet Pitcher, Michael J.
Bowness, Ruth
Dobson, Simon
Eftimie, Raluca
Gillespie, Stephen H.
author_sort Pitcher, Michael J.
collection PubMed
description Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of a predictive model that accurately reflects the diverse environment within the lung. This is important as TB has been shown to produce distinct localisations to different areas of the lung during different disease stages, with the environmental heterogeneity within the lung of factors such as air ventilation, blood perfusion and oxygen tension believed to contribute to the apical localisation witnessed during the post-primary form of the disease. Building upon our previous model of environmental lung heterogeneity, we present a networked metapopulation model that simulates TB across the whole lung, incorporating these notions of environmental heterogeneity across the whole TB life-cycle to show how different stages of the disease are influenced by different environmental and immunological factors. The alveolar tissue in the lung is divided into distinct patches, with each patch representing a portion of the total tissue and containing environmental attributes that reflect the internal conditions at that location. We include populations of bacteria and immune cells in various states, and events are included which determine how the members of the model interact with each other and the environment. By allowing some of these events to be dependent on environmental attributes, we create a set of heterogeneous dynamics, whereby the location of the tissue within the lung determines the disease pathological events that occur there. Our results show that the environmental heterogeneity within the lung is a plausible driving force behind the apical localisation during post-primary disease. After initial infection, bacterial levels will grow in the initial infection location at the base of the lung until an adaptive immune response is initiated. During this period, bacteria are able to disseminate and create new lesions throughout the lung. During the latent stage, the lesions that are situated towards the apex are the largest in size, and once a post-primary immune-suppressing event occurs, it is the uppermost lesions that reach the highest levels of bacterial proliferation. Our sensitivity analysis also shows that it is the differential in blood perfusion, causing reduced immune activity towards the apex, which has the biggest influence of disease outputs.
format Online
Article
Text
id pubmed-7511696
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-75116962020-12-07 Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle Pitcher, Michael J. Bowness, Ruth Dobson, Simon Eftimie, Raluca Gillespie, Stephen H. J Theor Biol Article Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of a predictive model that accurately reflects the diverse environment within the lung. This is important as TB has been shown to produce distinct localisations to different areas of the lung during different disease stages, with the environmental heterogeneity within the lung of factors such as air ventilation, blood perfusion and oxygen tension believed to contribute to the apical localisation witnessed during the post-primary form of the disease. Building upon our previous model of environmental lung heterogeneity, we present a networked metapopulation model that simulates TB across the whole lung, incorporating these notions of environmental heterogeneity across the whole TB life-cycle to show how different stages of the disease are influenced by different environmental and immunological factors. The alveolar tissue in the lung is divided into distinct patches, with each patch representing a portion of the total tissue and containing environmental attributes that reflect the internal conditions at that location. We include populations of bacteria and immune cells in various states, and events are included which determine how the members of the model interact with each other and the environment. By allowing some of these events to be dependent on environmental attributes, we create a set of heterogeneous dynamics, whereby the location of the tissue within the lung determines the disease pathological events that occur there. Our results show that the environmental heterogeneity within the lung is a plausible driving force behind the apical localisation during post-primary disease. After initial infection, bacterial levels will grow in the initial infection location at the base of the lung until an adaptive immune response is initiated. During this period, bacteria are able to disseminate and create new lesions throughout the lung. During the latent stage, the lesions that are situated towards the apex are the largest in size, and once a post-primary immune-suppressing event occurs, it is the uppermost lesions that reach the highest levels of bacterial proliferation. Our sensitivity analysis also shows that it is the differential in blood perfusion, causing reduced immune activity towards the apex, which has the biggest influence of disease outputs. Elsevier 2020-12-07 /pmc/articles/PMC7511696/ /pubmed/32771534 http://dx.doi.org/10.1016/j.jtbi.2020.110381 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pitcher, Michael J.
Bowness, Ruth
Dobson, Simon
Eftimie, Raluca
Gillespie, Stephen H.
Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title_full Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title_fullStr Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title_full_unstemmed Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title_short Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
title_sort modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511696/
https://www.ncbi.nlm.nih.gov/pubmed/32771534
http://dx.doi.org/10.1016/j.jtbi.2020.110381
work_keys_str_mv AT pitchermichaelj modellingtheeffectsofenvironmentalheterogeneitywithinthelungonthetuberculosislifecycle
AT bownessruth modellingtheeffectsofenvironmentalheterogeneitywithinthelungonthetuberculosislifecycle
AT dobsonsimon modellingtheeffectsofenvironmentalheterogeneitywithinthelungonthetuberculosislifecycle
AT eftimieraluca modellingtheeffectsofenvironmentalheterogeneitywithinthelungonthetuberculosislifecycle
AT gillespiestephenh modellingtheeffectsofenvironmentalheterogeneitywithinthelungonthetuberculosislifecycle