Cargando…
Anticipating future learning affects current control decisions: A comparison between passive and active adaptive management in an epidemiological setting
Infectious disease epidemics present a difficult task for policymakers, requiring the implementation of control strategies under significant time constraints and uncertainty. Mathematical models can be used to predict the outcome of control interventions, providing useful information to policymakers...
Autores principales: | Atkins, Benjamin D., Jewell, Chris P., Runge, Michael C., Ferrari, Matthew J., Shea, Katriona, Probert, William J.M., Tildesley, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511697/ https://www.ncbi.nlm.nih.gov/pubmed/32698028 http://dx.doi.org/10.1016/j.jtbi.2020.110380 |
Ejemplares similares
-
Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology
por: Shea, Katriona, et al.
Publicado: (2014) -
Real-time decision-making during emergency disease outbreaks
por: Probert, William J. M., et al.
Publicado: (2018) -
Causes of delayed outbreak responses and their impacts on epidemic spread
por: Tao, Yun, et al.
Publicado: (2021) -
Vote-processing rules for combining control recommendations from multiple models
por: Probert, William J. M., et al.
Publicado: (2022) -
Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study
por: Li, Shou-Li, et al.
Publicado: (2019)