Cargando…
Kernel Fusion Method for Detecting Cancer Subtypes via Selecting Relevant Expression Data
Recently, cancer has been characterized as a heterogeneous disease composed of many different subtypes. Early diagnosis of cancer subtypes is an important study of cancer research, which can be of tremendous help to patients after treatment. In this paper, we first extract a novel dataset, which con...
Autores principales: | Li, Shuhao, Jiang, Limin, Tang, Jijun, Gao, Nan, Guo, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511763/ https://www.ncbi.nlm.nih.gov/pubmed/33133130 http://dx.doi.org/10.3389/fgene.2020.00979 |
Ejemplares similares
-
Multi-Omics Data Fusion via a Joint Kernel Learning Model for Cancer Subtype Discovery and Essential Gene Identification
por: Feng, Jie, et al.
Publicado: (2021) -
Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data
por: Jiang, Limin, et al.
Publicado: (2019) -
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019) -
An Accurate Tool for Uncovering Cancer Subtypes by Fast Kernel Learning Method to Integrate Multiple Profile Data
por: Zhang, Hongyu, et al.
Publicado: (2021)