Cargando…
Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility
This study offers a suitable and easy proliposome-liposome method that enhances the encapsulation ability of liposome structures on poor water-soluble extracts. Pollen phenolic extract (PPE) was studied to show applicability in the proposed method. The poor water-soluble PPE (0.2%, w/v) was encapsul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511908/ https://www.ncbi.nlm.nih.gov/pubmed/32995656 http://dx.doi.org/10.1016/j.heliyon.2020.e05030 |
_version_ | 1783586051896377344 |
---|---|
author | Hızır-Kadı, İlayda Gültekin-Özgüven, Mine Altin, Gokce Demircan, Evren Özçelik, Beraat |
author_facet | Hızır-Kadı, İlayda Gültekin-Özgüven, Mine Altin, Gokce Demircan, Evren Özçelik, Beraat |
author_sort | Hızır-Kadı, İlayda |
collection | PubMed |
description | This study offers a suitable and easy proliposome-liposome method that enhances the encapsulation ability of liposome structures on poor water-soluble extracts. Pollen phenolic extract (PPE) was studied to show applicability in the proposed method. The poor water-soluble PPE (0.2%, w/v) was encapsulated by liposomes generated from proliposomes (P-liposomes) that were prepared via high-pressure homogenization technique without using any organic solvents and high temperature. Only a few drops of ethanol were used to dissolve poor water-soluble compounds in PPE during the preparation of P-liposomes. The trace amount of ethanol maintained the improvement of PPE solubility in P-liposome dispersion, hence the in vitro bioaccessibility and bioactivity of PPE incorporated in P-liposomes increased. Thus, higher encapsulation efficiency was found in P-liposomes compared to conventional liposomes (C-liposomes) in which the EE was 75 and 73%, respectively. To increase the physical stability of liposome structures, the surface of both P-liposomes and C-liposomes was covered with chitosan. There were found small changes between P-liposomes and C-liposomes in terms of mean diameter size and zeta potential. On the other hand, the bioactivity of encapsulated PPE showed differences in P-liposomes and C-liposomes. The antioxidant capacity of PPE in P-liposomes enhanced approximately two times in CUPRAC and three times in DPPH assays. Also, in vitro bioaccessibility of PPE in P-liposomes increased approximately 4 and 2 folds, respectively, regarding total phenolics and flavonoids. To our knowledge, this is the first report about the increment of encapsulation behavior of liposome structures on low water-soluble extract within an aqueous media. |
format | Online Article Text |
id | pubmed-7511908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75119082020-09-28 Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility Hızır-Kadı, İlayda Gültekin-Özgüven, Mine Altin, Gokce Demircan, Evren Özçelik, Beraat Heliyon Research Article This study offers a suitable and easy proliposome-liposome method that enhances the encapsulation ability of liposome structures on poor water-soluble extracts. Pollen phenolic extract (PPE) was studied to show applicability in the proposed method. The poor water-soluble PPE (0.2%, w/v) was encapsulated by liposomes generated from proliposomes (P-liposomes) that were prepared via high-pressure homogenization technique without using any organic solvents and high temperature. Only a few drops of ethanol were used to dissolve poor water-soluble compounds in PPE during the preparation of P-liposomes. The trace amount of ethanol maintained the improvement of PPE solubility in P-liposome dispersion, hence the in vitro bioaccessibility and bioactivity of PPE incorporated in P-liposomes increased. Thus, higher encapsulation efficiency was found in P-liposomes compared to conventional liposomes (C-liposomes) in which the EE was 75 and 73%, respectively. To increase the physical stability of liposome structures, the surface of both P-liposomes and C-liposomes was covered with chitosan. There were found small changes between P-liposomes and C-liposomes in terms of mean diameter size and zeta potential. On the other hand, the bioactivity of encapsulated PPE showed differences in P-liposomes and C-liposomes. The antioxidant capacity of PPE in P-liposomes enhanced approximately two times in CUPRAC and three times in DPPH assays. Also, in vitro bioaccessibility of PPE in P-liposomes increased approximately 4 and 2 folds, respectively, regarding total phenolics and flavonoids. To our knowledge, this is the first report about the increment of encapsulation behavior of liposome structures on low water-soluble extract within an aqueous media. Elsevier 2020-09-22 /pmc/articles/PMC7511908/ /pubmed/32995656 http://dx.doi.org/10.1016/j.heliyon.2020.e05030 Text en © 2020 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Hızır-Kadı, İlayda Gültekin-Özgüven, Mine Altin, Gokce Demircan, Evren Özçelik, Beraat Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title | Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title_full | Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title_fullStr | Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title_full_unstemmed | Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title_short | Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
title_sort | liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511908/ https://www.ncbi.nlm.nih.gov/pubmed/32995656 http://dx.doi.org/10.1016/j.heliyon.2020.e05030 |
work_keys_str_mv | AT hızırkadıilayda liposomalnanodeliverysystemsgeneratedfromproliposomesforpollenextractwithimprovedsolubilityandinvitrobioaccessibility AT gultekinozguvenmine liposomalnanodeliverysystemsgeneratedfromproliposomesforpollenextractwithimprovedsolubilityandinvitrobioaccessibility AT altingokce liposomalnanodeliverysystemsgeneratedfromproliposomesforpollenextractwithimprovedsolubilityandinvitrobioaccessibility AT demircanevren liposomalnanodeliverysystemsgeneratedfromproliposomesforpollenextractwithimprovedsolubilityandinvitrobioaccessibility AT ozcelikberaat liposomalnanodeliverysystemsgeneratedfromproliposomesforpollenextractwithimprovedsolubilityandinvitrobioaccessibility |