Cargando…
Protective Effect of Astragaloside IV on High Glucose-Induced Endothelial Dysfunction via Inhibition of P2X7R Dependent P38 MAPK Signaling Pathway
Vascular endothelial dysfunction is associated with increased mortality in patients with diabetes. Astragaloside IV (As-IV) is a bioactive saponin with therapeutic potential as an anti-inflammatory and antiendothelial dysfunction. However, the underlying mechanism for how As-IV ameliorated endotheli...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512101/ https://www.ncbi.nlm.nih.gov/pubmed/33014270 http://dx.doi.org/10.1155/2020/5070415 |
Sumario: | Vascular endothelial dysfunction is associated with increased mortality in patients with diabetes. Astragaloside IV (As-IV) is a bioactive saponin with therapeutic potential as an anti-inflammatory and antiendothelial dysfunction. However, the underlying mechanism for how As-IV ameliorated endothelial dysfunction is still unclear. Therefore, in this study, we examined the protective effect of As-IV against endothelial dysfunction and explored potential molecular biology mechanism. In vivo, rats were intraperitoneally injected with streptozotocin (STZ) at a dose of 65 mg/kg body weight to establish a diabetic model. In vitro studies, rat aortic endothelial cells (RAOEC) were pretreated with As-IV, SB203580 (p38 MAPK inhibitor) for 2 h prior to the addition of high glucose (33 mM glucose). Our findings indicated that As-IV improved impaired endothelium-dependent relaxation and increased the levels of endothelial NO synthase (eNOS) and nitric oxide (NO) both in vivo and in vitro. Besides, As-IV treatment inhibited the elevated inflammation and oxidative stress in diabetic model both in vivo and in vitro. Moreover, As-IV administration reversed the upregulated expression of P2X7R and p-p38 MAPK in vivo and in vitro. Additionally, the effects of both P2X7R siRNA and SB203580 on endothelial cells were similar to As-IV. Collectively, our study demonstrated that As-IV rescued endothelial dysfunction induced by high glucose via inhibition of P2X7R dependent p38 MAPK signaling pathway. This provides a theoretical basis for the further study of the vascular endothelial protective effects of As-IV. |
---|