Cargando…

Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Martos, Gabriel, Hernández, Nicolás, Muñoz, Alberto, Moguerza, Javier M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512230/
https://www.ncbi.nlm.nih.gov/pubmed/33265131
http://dx.doi.org/10.3390/e20010033
Descripción
Sumario:We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.