Cargando…

Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Martos, Gabriel, Hernández, Nicolás, Muñoz, Alberto, Moguerza, Javier M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512230/
https://www.ncbi.nlm.nih.gov/pubmed/33265131
http://dx.doi.org/10.3390/e20010033
_version_ 1783586109791404032
author Martos, Gabriel
Hernández, Nicolás
Muñoz, Alberto
Moguerza, Javier M.
author_facet Martos, Gabriel
Hernández, Nicolás
Muñoz, Alberto
Moguerza, Javier M.
author_sort Martos, Gabriel
collection PubMed
description We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.
format Online
Article
Text
id pubmed-7512230
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75122302020-11-09 Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection Martos, Gabriel Hernández, Nicolás Muñoz, Alberto Moguerza, Javier M. Entropy (Basel) Article We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection. MDPI 2018-01-11 /pmc/articles/PMC7512230/ /pubmed/33265131 http://dx.doi.org/10.3390/e20010033 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Martos, Gabriel
Hernández, Nicolás
Muñoz, Alberto
Moguerza, Javier M.
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title_full Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title_fullStr Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title_full_unstemmed Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title_short Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
title_sort entropy measures for stochastic processes with applications in functional anomaly detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512230/
https://www.ncbi.nlm.nih.gov/pubmed/33265131
http://dx.doi.org/10.3390/e20010033
work_keys_str_mv AT martosgabriel entropymeasuresforstochasticprocesseswithapplicationsinfunctionalanomalydetection
AT hernandeznicolas entropymeasuresforstochasticprocesseswithapplicationsinfunctionalanomalydetection
AT munozalberto entropymeasuresforstochasticprocesseswithapplicationsinfunctionalanomalydetection
AT moguerzajavierm entropymeasuresforstochasticprocesseswithapplicationsinfunctionalanomalydetection