Cargando…
k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification †
Image and video data are today being shared between government entities and other relevant stakeholders on a regular basis and require careful handling of the personal information contained therein. A popular approach to ensure privacy protection in such data is the use of deidentification technique...
Autores principales: | Meden, Blaž, Emeršič, Žiga, Štruc, Vitomir, Peer, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512257/ https://www.ncbi.nlm.nih.gov/pubmed/33265147 http://dx.doi.org/10.3390/e20010060 |
Ejemplares similares
-
Private Face Image Generation Method Based on Deidentification in Low Light
por: Dong, Beibei, et al.
Publicado: (2022) -
Making the Most of Single Sensor Information: A Novel Fusion Approach for 3D Face Recognition Using Region Covariance Descriptors and Gaussian Mixture Models †
por: Križaj, Janez, et al.
Publicado: (2022) -
Current Landscape of Generative Adversarial Networks for Facial Deidentification in Dermatology: Systematic Review and Evaluation
por: Park, Christine, et al.
Publicado: (2022) -
Reconstructing Superquadrics from Intensity and Color Images
por: Tomašević, Darian, et al.
Publicado: (2022) -
Consent and Deidentification of Patient Images in Dermatology Journals: Observational Study
por: Nanda, Japbani K, et al.
Publicado: (2022)