Cargando…
Maximum Entropy Expectation-Maximization Algorithm for Fitting Latent-Variable Graphical Models to Multivariate Time Series
This work is focused on latent-variable graphical models for multivariate time series. We show how an algorithm which was originally used for finding zeros in the inverse of the covariance matrix can be generalized such that to identify the sparsity pattern of the inverse of spectral density matrix....
Autores principales: | Maanan, Saïd, Dumitrescu, Bogdan, Giurcăneanu, Ciprian Doru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512274/ https://www.ncbi.nlm.nih.gov/pubmed/33265161 http://dx.doi.org/10.3390/e20010076 |
Ejemplares similares
-
Multivariate Time Series Imputation: An Approach Based on Dictionary Learning
por: Zheng, Xiaomeng, et al.
Publicado: (2022) -
Maximum entropy approach to multivariate time series randomization
por: Marcaccioli, Riccardo, et al.
Publicado: (2020) -
Maximum-Entropy Tools for Economic Fitness and Complexity
por: Krantz, Ruben, et al.
Publicado: (2018) -
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms
por: Zeng, Gengsheng L., et al.
Publicado: (2019) -
Accelerating L(1)-penalized expectation maximization algorithm for latent variable selection in multidimensional two-parameter logistic models
por: Shang, Laixu, et al.
Publicado: (2023)