Cargando…

A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy

The paper technically proposes a newly secure scheme for simultaneous wireless power and information transfer (SWIPT) frameworks. We take into account an orthogonal frequency division multiplexing (OFDM)-based game which is in relation to a multi-input multi-output multi-antenna Eavesdropper (MIMOME...

Descripción completa

Detalles Bibliográficos
Autor principal: Zamanipour, Makan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512277/
https://www.ncbi.nlm.nih.gov/pubmed/33265166
http://dx.doi.org/10.3390/e20010079
Descripción
Sumario:The paper technically proposes a newly secure scheme for simultaneous wireless power and information transfer (SWIPT) frameworks. We take into account an orthogonal frequency division multiplexing (OFDM)-based game which is in relation to a multi-input multi-output multi-antenna Eavesdropper (MIMOME) strategy. The transceiver is generally able to witness the case imperfect channel state information (ICSI) at the transmitter side. Transferring power and information are conducted via orthogonally provided sub-carriers. We propose a two-step Stackelberg game to optimise the Utility Functions of both power and information parts. The price for the first stage (in connection with information) is the total power of the other sub-carriers over which the energy is supported. In this stage, the sum secrecy rate should be essentially maximised. The second level of the proposed Stackelberg game is in association with the energy part. In this stage, the price essentially is the total power of the other sub-carriers over which the information is transferred. In this stage, additionally, the total power transferred is fundamentally maximised. Subsequently, the optimally and near-optimally mathematical solutions are derived, for some special cases such as ICSI one. Finally, the simulations validate our scheme as well, authenticating our contribution’s tightness and efficiency.