Cargando…
Making the Coupled Gaussian Process Dynamical Model Modular and Scalable with Variational Approximations †
We describe a sparse, variational posterior approximation to the Coupled Gaussian Process Dynamical Model (CGPDM), which is a latent space coupled dynamical model in discrete time. The purpose of the approximation is threefold: first, to reduce training time of the model; second, to enable modular r...
Autores principales: | Velychko, Dmytro, Knopp, Benjamin, Endres, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512289/ https://www.ncbi.nlm.nih.gov/pubmed/33265813 http://dx.doi.org/10.3390/e20100724 |
Ejemplares similares
-
Scalable Gaussian Processes and the search for exoplanets
por: FOREMANMACKEY, Daniel
Publicado: (2015) -
Learning from crowds in digital pathology using scalable variational Gaussian processes
por: López-Pérez, Miguel, et al.
Publicado: (2021) -
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation
por: Galy-Fajou, Théo, et al.
Publicado: (2021) -
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
por: Chang, Qiang, et al.
Publicado: (2016) -
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome
por: Tu, Jieqi, et al.
Publicado: (2022)