Cargando…

Sparse Optimistic Based on Lasso-LSQR and Minimum Entropy De-Convolution with FARIMA for the Remaining Useful Life Prediction of Machinery

To reduce the maintenance cost and safeguard machinery operation, remaining useful life (RUL) prediction is very important for long term health monitoring. In this paper, we introduce a novel hybrid method to deal with the RUL prediction for health management. Firstly, the sparse reconstruction algo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bo, Gao, Yangde, Feng, Songlin, Chanwimalueang, Theerasak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512308/
https://www.ncbi.nlm.nih.gov/pubmed/33265836
http://dx.doi.org/10.3390/e20100747
Descripción
Sumario:To reduce the maintenance cost and safeguard machinery operation, remaining useful life (RUL) prediction is very important for long term health monitoring. In this paper, we introduce a novel hybrid method to deal with the RUL prediction for health management. Firstly, the sparse reconstruction algorithm of the optimized Lasso and the Least Square QR-factorization (Lasso-LSQR) is applied to compressed sensing (CS), which can realize the sparse optimization for long term health monitoring data. After the sparse signal is reconstructed, the minimum entropy de-convolution (MED) is used to identify the fault characteristics and to obtain significant fault information from the machinery operation. Health indicators with Skip-over, sample entropy and approximate entropy are then performed to track the degradation of the machinery process. The performance analysis of the Skip-over is superior to other indicators. Finally, Fractal Autoregressive Integrated Moving Average model (FARIMA) is employed to predict the Skip-over using the R/S method. The analysis results evidence that the novel hybrid method yields a good performance, and such method can achieve highly accurate RUL prediction and safeguard machinery operation for long term monitoring.