Cargando…
Non-Linear Langevin and Fractional Fokker–Planck Equations for Anomalous Diffusion by Lévy Stable Processes
The numerical solutions to a non-linear Fractional Fokker–Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where Lévy fluctuations are intro...
Autores principales: | Anderson, Johan, Moradi, Sara, Rafiq, Tariq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512322/ https://www.ncbi.nlm.nih.gov/pubmed/33265849 http://dx.doi.org/10.3390/e20100760 |
Ejemplares similares
-
Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations
por: Pavliotis, Grigorios A
Publicado: (2014) -
Fokker-Planck-Kolmogorov equations
por: Bogachev, Vladimir I, et al.
Publicado: (2015) -
On the connection between nonextensivity and financial markets, a langevin and fokker-planck analysis
por: Duarte Queiros, S M
Publicado: (2005) -
Nonlinear Fokker-Planck equations : fundamentals and applications /
por: Frank, Till Daniel
Publicado: (2005) -
Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations
por: Czégel, Dániel, et al.
Publicado: (2018)