Cargando…
Statistical Mechanics of On-Line Learning Under Concept Drift
We introduce a modeling framework for the investigation of on-line machine learning processes in non-stationary environments. We exemplify the approach in terms of two specific model situations: In the first, we consider the learning of a classification scheme from clustered data by means of prototy...
Autores principales: | Straat, Michiel, Abadi, Fthi, Göpfert, Christina, Hammer, Barbara, Biehl, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512337/ https://www.ncbi.nlm.nih.gov/pubmed/33265863 http://dx.doi.org/10.3390/e20100775 |
Ejemplares similares
-
An efficient incremental learning mechanism for tracking concept drift in spam filtering
por: Sheu, Jyh-Jian, et al.
Publicado: (2017) -
Learning Outcomes and Their Relatedness Under Curriculum Drift
por: Mondal, Sneha, et al.
Publicado: (2020) -
Concept in statistical mechanics
por: Hobson, Arthur
Publicado: (1971) -
Adversarial concept drift detection under poisoning attacks for robust data stream mining
por: Korycki, Łukasz, et al.
Publicado: (2022) -
Forecasting patient flows with pandemic induced concept drift using explainable machine learning
por: Susnjak, Teo, et al.
Publicado: (2023)