Cargando…
Variations à la Fourier-Weyl-Wigner on Quantizations of the Plane and the Half-Plane
Any quantization maps linearly function on a phase space to symmetric operators in a Hilbert space. Covariant integral quantization combines operator-valued measure with the symmetry group of the phase space. Covariant means that the quantization map intertwines classical (geometric operation) and q...
Autores principales: | Bergeron, Hervé, Gazeau, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512349/ https://www.ncbi.nlm.nih.gov/pubmed/33265875 http://dx.doi.org/10.3390/e20100787 |
Ejemplares similares
-
Γ-equivariant form of the Berezin quantization of the upper half plane
por: dulescu, Florin Ră
Publicado: (1998) -
The half plane UIPT is recurrent
por: Angel, Omer, et al.
Publicado: (2017) -
Gauge invariance and Weyl-polymer quantization
por: Strocchi, Franco
Publicado: (2016) -
Mathematical aspects of Weyl quantization and phase
por: Dubin, D A, et al.
Publicado: (2000) -
The Wigner representation of classical mechanics, quantization and classical limit
por: Bolivar, A O
Publicado: (2001)