Cargando…
A Fast Feature Selection Algorithm by Accelerating Computation of Fuzzy Rough Set-Based Information Entropy
The information entropy developed by Shannon is an effective measure of uncertainty in data, and the rough set theory is a useful tool of computer applications to deal with vagueness and uncertainty data circumstances. At present, the information entropy has been extensively applied in the rough set...
Autores principales: | Zhang, Xiao, Liu, Xia, Yang, Yanyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512350/ https://www.ncbi.nlm.nih.gov/pubmed/33265876 http://dx.doi.org/10.3390/e20100788 |
Ejemplares similares
-
Computational intelligence and feature selection: rough and fuzzy approaches
por: Jensen, Richard, et al.
Publicado: (2008) -
An Algorithm to Select the Optimal Program Based on Rough Sets and Fuzzy Soft Sets
por: Wenjun, Liu, et al.
Publicado: (2014) -
Transactions on rough sets II: rough sets and fuzzy sets
por: Hutchison, David, et al.
Publicado: (2005) -
Theory and Application on Rough Set, Fuzzy Logic, and Granular Computing
por: Yang, Xibei, et al.
Publicado: (2015) -
Generalized rough and fuzzy rough automata for semantic computing
por: Yadav, Swati, et al.
Publicado: (2022)