Cargando…
Dissecting Deep Learning Networks—Visualizing Mutual Information
Deep Learning (DL) networks are recent revolutionary developments in artificial intelligence research. Typical networks are stacked by groups of layers that are further composed of many convolutional kernels or neurons. In network design, many hyper-parameters need to be defined heuristically before...
Autores principales: | Fang, Hui, Wang, Victoria, Yamaguchi, Motonori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512386/ https://www.ncbi.nlm.nih.gov/pubmed/33266547 http://dx.doi.org/10.3390/e20110823 |
Ejemplares similares
-
Learning Domain-Independent Deep Representations by Mutual Information Minimization
por: Wang, Ke, et al.
Publicado: (2019) -
Mutual Information Based Learning Rate Decay for Stochastic Gradient Descent Training of Deep Neural Networks
por: Vasudevan, Shrihari
Publicado: (2020) -
Learning biological network using mutual information and conditional independence
por: Kim, Dong-Chul, et al.
Publicado: (2010) -
Mutual information measure of visual perception based on noisy spiking neural networks
por: Xu, Ziheng, et al.
Publicado: (2023) -
Causal Analysis of Learning Performance Based on Bayesian Network and Mutual Information
por: Chen, Jing, et al.
Publicado: (2019)