Cargando…
Nonlocal Means Two Dimensional Histogram-Based Image Segmentation via Minimizing Relative Entropy
Spatial correlation information between pixels is considered to be very important in thresholding methods. However, it is often ignored and thus unsatisfied segmentation results maybe obtained. To overcome this shortcoming, we propose a new image segmentation approach by taking not only pixels’ spat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512389/ https://www.ncbi.nlm.nih.gov/pubmed/33266551 http://dx.doi.org/10.3390/e20110827 |
Sumario: | Spatial correlation information between pixels is considered to be very important in thresholding methods. However, it is often ignored and thus unsatisfied segmentation results maybe obtained. To overcome this shortcoming, we propose a new image segmentation approach by taking not only pixels’ spatial information but also pixels’s gray level into account. First, a non-local mean filter is imposed on the image. Then the filtered image and the original image together are adopted to build a two dimensional histogram, it is called non-local mean two dimensional histogram. Finally, a minimum relative entropy criteria is used to select the ideal thresholding vector. Since the non-local mean filter process is performed in a neighborhood of current pixel, it carries out the spatial information of current pixel. Segmentation results on several images illustrate the effectiveness of the proposed thresholding method, whose segmentation accuracy are greatly improved compared to most existing thresholding methods. |
---|