Cargando…
Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations
We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512390/ https://www.ncbi.nlm.nih.gov/pubmed/33266553 http://dx.doi.org/10.3390/e20110829 |
Sumario: | We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality is upper bounded by [Formula: see text] and specify the two-qubit states where this quantum upper bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states, we obtain the same upper bound [Formula: see text] for violation of the original Bell inequality under Alice and Bob spin measurements, but we have not yet been able to show that this quantum upper bound is the least one. We discuss experimental consequences of our mathematical study. |
---|