Cargando…

Modelling Study on Internal Energy Loss Due to Entropy Generation for Non-Darcy Poiseuille Flow of Silver-Water Nanofluid: An Application of Purification

In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Shehzad, Nasir, Zeeshan, Ahmed, Ellahi, Rahmat, Rashidi, Saman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512413/
https://www.ncbi.nlm.nih.gov/pubmed/33266575
http://dx.doi.org/10.3390/e20110851
Descripción
Sumario:In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrative models are considered: (i) heat transfer irreversibility (HTI), (ii) fluid friction irreversibility (FFI), (iii) Joule dissipation irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI). The governing equations of continuity, momentum, energy, and entropy generation are simplified by taking long wavelength approximations on the channel walls. The results represent highly nonlinear coupled ordinary differential equations that are solved analytically with the help of the homotopy analysis method. It is shown that for minimum and maximum averaged entropy generation, 0.3% by vol and 0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is evident due to an increase in pressure gradient. The current analysis provides an adequate theoretical estimate for low-cost purification of drinking water by silver nanoparticles in an industrial process.