Cargando…
Early Fault Detection Method for Rotating Machinery Based on Harmonic-Assisted Multivariate Empirical Mode Decomposition and Transfer Entropy
It is a difficult task to analyze the coupling characteristics of rotating machinery fault signals under the influence of complex and nonlinear interference signals. This difficulty is due to the strong noise background of rotating machinery fault feature extraction and weaknesses, such as modal mix...
Autores principales: | Wu, Zhe, Zhang, Qiang, Wang, Lixin, Cheng, Lifeng, Zhou, Jingbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512455/ https://www.ncbi.nlm.nih.gov/pubmed/33266597 http://dx.doi.org/10.3390/e20110873 |
Ejemplares similares
-
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013) -
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis
por: Faysal, Atik, et al.
Publicado: (2021) -
A Precise Diagnosis Method of Structural Faults of Rotating Machinery based on Combination of Empirical Mode Decomposition, Sample Entropy, and Deep Belief Network
por: Guan, Zhaoyi, et al.
Publicado: (2019) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery
por: Gao, Kangping, et al.
Publicado: (2021) -
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022)