Cargando…
Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling
The main purpose of the present study is to apply three classification models, namely, the index of entropy (IOE) model, the logistic regression (LR) model, and the support vector machine (SVM) model by radial basis function (RBF), to produce landslide susceptibility maps for the Fugu County of Shaa...
Autores principales: | Zhang, Tingyu, Han, Ling, Chen, Wei, Shahabi, Himan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512466/ https://www.ncbi.nlm.nih.gov/pubmed/33266608 http://dx.doi.org/10.3390/e20110884 |
Ejemplares similares
-
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model
por: Zhang, Tingyu, et al.
Publicado: (2019) -
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
por: Shahabi, Himan, et al.
Publicado: (2015) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020)